If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+96Y+5
We move all terms to the left:
-(-16Y^2+96Y+5)=0
We get rid of parentheses
16Y^2-96Y-5=0
a = 16; b = -96; c = -5;
Δ = b2-4ac
Δ = -962-4·16·(-5)
Δ = 9536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9536}=\sqrt{64*149}=\sqrt{64}*\sqrt{149}=8\sqrt{149}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{149}}{2*16}=\frac{96-8\sqrt{149}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{149}}{2*16}=\frac{96+8\sqrt{149}}{32} $
| t-2=12-t | | -250+5x=3x | | 14.04+0.05x=14.79+0.14x | | -1/6(x-12)+1/2(x+2)=x+6 | | 1+4.7p-2915=5.5p+0.565 | | 4(3-2x)=5(3x+1) | | -x=1=-7 | | -4m+49=9(6m+1) | | 5x-7=-7+2(×+3) | | -18+4x=9-19 | | -2(x+3)+5=3(x+4)+1 | | (2x-5)^2=7 | | 3/1+a=3/5 | | 118=-5x | | 5y+6=5y | | 5x+1x=13.1+8x | | 37+x=49 | | 2(x+5)=-13 | | -30u^2+61u-30=0 | | 5/8(b-4)=2 | | -3+1.4x=2x-9 | | 3/5+5m/4=47/20 | | y=3(-3)-2 | | N=4/5(m+7) | | 16x-4=38x | | 40t+60(3-t)=180 | | 3(x-3)=4(x+3)+6x | | (1/16)x^2-9=0 | | -2(6x-4)=18-(12x+10) | | 21=a-76 | | 7x^2-22-24=0 | | 5x+7=3(5x+7) |